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Attacking Internationalized Software
Introduction

• Who are you?
– Founding Partner of Information Security Partners, LLC (iSEC Partners)
– Application security consultants and researchers

• Why listen to this talk?
– Every application uses internationalization (whether you know it or not!)
– A great deal of research potential

• Platforms
– Much of this talk will use Windows for examples
– Internationalization is a cross-platform concern!
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Attacking Internationalized Software
• Introduction

• Background
– Internationalization Basics
– Platform Support
– The Internationalization “Stack”

• Historical Attacks
– Width calculation
– Encoding attacks

• Current Attacks
– Conversion from Unicode
– Conversion to Unicode
– Encoding Attacks

• Tools
– I18NAttack

• Q&A
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Attacking Internationalized Software
Background – Internationalization Basics

• Internationalization Defined
– Provides support for potential use across multiple languages and locale-

specific preferences
– Most of this talk will focus on character manipulation

• Character Manipulation
– Text must be represented in 1s and 0s internal to the machine
– Many standards have emerged to encode text into a binary representation
– ASCII is a common example
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Attacking Internationalized Software
Background – Internationalization Basics

Binary Representations:

APOSTROPHE = 0x27 = 0010 0111
LATIN CAPITAL LETTER A = 0x41 = 0100 0001
LATIN CAPITAL LETTER B = 0x42 = 0100 0010

Credit: http://www.microsoft.com/globaldev
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Attacking Internationalized Software
Background – Internationalization Basics

• Code Pages 
– Unicode
– Single-Byte: Most pages for European languages, ISO-8859-*…
– Multi-Byte: Japanese (Shift-JIS), Chinese, Korean

• Encodings
– EBCDIC, ASCII, UTF-7, UTF-8, UTF-16, UCS-2…

• Encodings vs. Code Points
– Code pages describe sets of points
– Encodings translate those points to 1s and 0s
– Some standards don’t require the distinction as much: ASCII
– Some are quite different: Unicode/UTF-8
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Attacking Internationalized Software
Background – Internationalization Basics

• Multi-Byte Code Page
0x41 = U+0041 = LATIN CAPITAL LETTER A
0x81 0x8C = U+2032 = PRIME 

See http://www.microsoft.com/globaldev for others

http://www.microsoft.com/globaldev
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Attacking Internationalized Software
Background – Internationalization Basics

• Unicode
– Attempt to unify the world’s characters into a single code page
– Current standards specify a 21-bit character space

• Unicode Encodings
– Though Unicode is often associated with 8 or 16-bit chars, these are just the 

most common encodings
– Many encodings available: UTF-32, UTF-16, UCS-2, UTF-8, UTF-7
– Many encodings, including UTF-16 and UTF-8 use a variable byte pattern

LATIN CAPITAL LETTER A = U+0041 = 0x41
HALFWIDTH KATAKANA LETTER A = U+FF71 = 0xEF 0xBD 0xB1
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Attacking Internationalized Software
Background – Platform Support

• OS provides core of support
– Windows core text is UTF-16 encoded
– Linux Standard Base requires UTF-8 string support

• Support isn’t just from the OS
– Programming language
– Virtual machines
– Application only

• This offers a unique attack surface
– Cross-OS, Language, Application Class, and Implementation
– A great place to start is with standards that stipulate I18N support
– In short, this hits almost every application out there
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Attacking Internationalized Software
Background – Platform Support

• Character Manipulation Support
– Everything required to support cross-code page data
– Everything required to support encodings

• Unicode often used as the canonical representation
– This makes sense given that it is the unified code page

• Each platform uses similar patterns for converstion
– Code page source – destination can be inferred
– Parameters of conversion – there are hard decisions to make
– Core data support – source and destination locations

• Let’s look at some examples…
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Attacking Internationalized Software
Background – Platform Support

• MultiByteToWideChar – Convert to Unicode
– CodePage - can use default (CP_ACP) which will vary by system
– Note all of the length specifiers!

int MultiByteToWideChar(
UINT CodePage,         // code page
DWORD dwFlags,         // character-type options
LPCSTR lpMultiByteStr, // string to map
int cbMultiByte,       // number of bytes in string
LPWSTR lpWideCharStr,  // wide-character buffer
int cchWideChar // size of buffer

);



www.isecpartners.comInformation Security Partners, LLC

12

Attacking Internationalized Software
Background – Platform Support

• WideCharToMultiByte – Convert from Unicode
– dwFlags – modifies conversion properties

• WC_NO_BEST_FIT_CHARS is your friend!
– lpDefaultChar – allows you to specify error character 

int WideCharToMultiByte(
UINT CodePage,            // code page
DWORD dwFlags,            // performance and mapping flags
LPCWSTR lpWideCharStr,    // wide-character string
int cchWideChar,          // number of chars in string
LPSTR lpMultiByteStr,     // buffer for new string
int cbMultiByte,          // size of buffer
LPCSTR lpDefaultChar,     // default for unmappable chars
LPBOOL lpUsedDefaultChar // set when default char used

);
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Attacking Internationalized Software
Background – Platform Support

• Almost every platform has support for internationalization 
– Results depend on Unicode standard supported by platform 

• Newer platforms tend to play nicer with Unicode
– .Net & Java use native Unicode encodings, though they can convert to others

• Great, I use one of those!
– Your application still depends on the internationalization support of underlying 

OS, servers they interact with, etc.
– You still have to worry these attacks
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Attacking Internationalized Software
Background – The Internationalization Stack

• Every application has internationalization dependencies

– Development platform
– External libraries
– Operating System
– Application Server
– Database Server - collations!
– Clients
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Attacking Internationalized Software
Background – The Internationalization Stack

• Each level acts as a potential “internationalization boundary”
– Your app may get it right, but the next layer up or down might not!

• The Default Code Page
– Remember CP_ACP?
– Change system and user locales
– Ever tried to test your app on other languages?
– How about throughout the stack?
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Attacking Internationalized Software
Background – The Internationalization Stack

• Web applications
– Code page can be set on both HTTP request and response

POST /test.html HTTP/1.1
Host: Server
User-Agent: I18NAttack
Accept: */*
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
Content-Type: application/x-www-form-urlencoded; 

charset=utf-8
Content-length: 19

user=test&pass=test
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Attacking Internationalized Software
Background – The Internationalization Stack

• Web applications
– Code page is set on first line of every XML document

<?xml version="1.0" encoding="utf-8" ?>
<TestXML>

<Data>
This is test data

</Data>

</TestXML> 
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Attacking Internationalized Software
Background – The Internationalization Stack

Please don’t check hereHTTP Parser

Operating 
System

Database

Database 
Access Library

Application 
Logic

XML Parser

Most practical point of control for devs

Great research potential!
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Attacking Internationalized Software
• Introduction

• Background
– Internationalization Basics
– Platform Support
– The Internationalization “Stack”

• Historical Attacks
– Width calculation
– Encoding attacks

• Current Attacks
– Conversion from Unicode
– Conversion to Unicode
– Encoding Attacks

• Tools
– I18NAttack

• Q&A
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Attacking Internationalized Software
Historical Attacks – Width Calculation

• Security and Internationalization has seen some attention…
– Chalk these up as “lesson learned,” for the most part

• Attack Pattern – Incorrect Width Calculation
– Conversion functions
– Count of bytes vs. Count of characters

• sizeof(array) vs. sizeof(array)/sizeof(array[0])
– Compile-time function specifiers (lstr*, tchars) affect sizes

• Buffer Overflow
– Destination buffer assumed to be 1 byte/character
– Reported destination buffer is count of bytes rather than count of characters
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Attacking Internationalized Software
Historical Attacks – Encoding Attacks

• Attack Pattern - non-minimal UTF-8 encodings

• Consider an HTTP Server
– I would like to request a file called blah.html off a web server

• Legitimate requests have simple encodings:
– http://.../web/index.html
– http://.../web/../../blah
– http://.../web/%2E%2E%2F%2E%2E%2F/blah
– It is easy enough to look for .. / %2E%2E and %2F

• Unusual encodings can bypass validation routines:
– %C0%AE is a non-minimal UTF-8 encoding for %2E
– http://.../web/%C0%AE%C0%AE%C0%AF%C0%AE%C0%AE%CO%AF/blah
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Attacking Internationalized Software
• Introduction

• Background
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– Conversion to Unicode
– Encoding Attacks
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Attacking Internationalized Software
Current Attacks – Conversion from Unicode

• Scenario – Validation is performed on input, changed to 
locale-specific text

• Attack Class – “Use Best-Fit Equivalents”
– Unicode’s character space is much larger than any locale-specific code page
– Results in a many-to-one mapping for many characters
– Code-page specific
– Big reason why WC_NO_BEST_FIT_CHARS should always be specified
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Attacking Internationalized Software
Current Attacks – Conversion from Unicode

• Sneaking an apostrophe in…
– U+2032 = PRIME 
– Converted to Latin-1252 it is 0x27 – Apostrophe
– Same thing happens for quotation marks, numbers, letters, etc.
– Latin-1 isn’t the only code page, have you tried your other supported 

languages as well? 

Convert to Latin-1252

Demo
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Attacking Internationalized Software
Current Attacks – Conversion to Unicode

• Scenario – Validation is performed on input, later converted 
to Unicode

• Attack Class – “Eating Characters”
– Many languages rely on “escape characters” to cleanse data
– Validation routines will often identify and escape as appropriate
– Eating one of the characters will counteract this validation routine

• Use a multi-byte encoding scheme
– A converter will identify lead byte, and interpret trail bytes accordingly
– Just send up a lead byte by itself…
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Attacking Internationalized Software
Current Attacks – Conversion to Unicode

• Eating a SQL quotation character 
– Using Shift-JIS MBCS Japanese Code Page
– Interpret as Unicode

0x82 0x60 = FULLWIDTH LATIN CAPITAL LETTER A
0x82 0x27 = Not mapped, converts to default char (?)
0x82 0x27 0x27 = Not mapped plus apostrophe (?’)

• Consider a database…
– Table users requires support for names with an apostrophe
select * from users where name = ‘O’’Henry’
– Submit a last name that ends in 0x82
select * from users where name = ‘O’’Henry?
– Submit a last name that ends in 0x82’ or 1=1--
select * from users where name = ‘O’’Henry?’ or 1=1—
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Attacking Internationalized Software
Current Attacks – Encoding Attacks

• Scenario – Validation is performed on input, changed to an 
alternate encoding

• Attack Class – “Foiling Canonicalization”
– The IIS4 vuln required that %C0%AE be interpreted as 0x2E or simply ‘.’
– One easy way to fix – disallow non-minimal encoding support
– Indeed, the Unicode standard was changed

• What to do with the illegal characters
– Causing an error is not usually acceptible in widely distributed applications
– What happens if every unusual character caused a database to skip a 

transaction?
– Most UTF-8 parsers today choose to omit such characters rather than fault
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Attacking Internationalized Software
Current Attacks – Encoding Attacks

• Legitimate requests have simple encodings:
– http://.../web/index.html
– http://.../web/../../blah
– http://.../web/%2E%2E%2F%2E%2E%2F/blah
– ..easy enough to look for .. / %2E%2E and %2F

• Unexpected encodings can bypass validation routines:
– %C0%AE is a non-minimal UTF-8 encoding for %2E
– http://.../web/.%C0%AE./.%C0%AE./blah
– ../ or direct variants not found in input, so passed to file access routine
– File parser converts .%C0AE./.%C0AE./ to UTF-16 (as NtCreateFile requires)
– Non-minimal encodings dropped - ../../ remains

Demo
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Attacking Internationalized Software
Current Attacks – Encoding Attacks

• Attack Class – “Mistaken Identity”
– We have been spoiled by the most common Unicode encodings
– Unicode is just a set of code points, encoding is up to the parser
– UTF-8, UTF-16, and UCS-2 all resemble ASCII

• UTF-7
– 7-bit encoding designed to work with ASCII-only SMTP
– Most printable ASCII characters are encoded directly
– Everything else is encoded as UTF-16, modified base64 encoded, and 

wrapped with + and –

• Sneak “garbage” data past validators
– Most interesting characters exist in ASCII – ‘, “, <, >, =…
– Validation routines often take advantage of the ASCII resemblance
– Many encodings can easily bypass this approach
– ASCII, EBCDIC, UTF7..
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Attacking Internationalized Software
Current Attacks – Bonus!

• Timestamp Attacks
– Is 10-06-06 October 6, 2006 or June 6, 2010? 
– Your ticket expiration check might want to know!

• Sorting Attacks
– Which comes first, apple or aardvark?  How about in Danish?
– Your search & validation routine might want to know!

• What is a proper decimal separator?
– Your CSV-based storage routine might want to know
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Attacking Internationalized Software
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Attacking Internationalized Software
Tools – I18NAttack

• Background
– Testing equivalence characters, “eaters,” alternate encodings is time 

consuming!
– Goal is to provide a security-focused collection of characters and encodings 

that often trip up input validation routines
– Using it is always going to be transport-dependent, but here is a tool to get 

you started…

• I18NAttack
– HTTP POST/GET Parameter Fuzzer
– Reference implementation for nasty character database
– Will identify and fuzz problem characters across equivalents, unusual 

encodings, etc.
– Use to bypass poor input validation

Demo
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Attacking Internationalized Software

Q&A
Scott Stender

scott@isecpartners.com
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