
Information Security Partners, LLC
iSECPartners.com

Attacking Internationalized Software

Scott Stender
scott@isecpartners.com

Black Hat Japan
October 6, 2006

www.isecpartners.comInformation Security Partners, LLC

2

Attacking Internationalized Software
Introduction

• Who are you?
– Founding Partner of Information Security Partners, LLC (iSEC Partners)
– Application security consultants and researchers

• Why listen to this talk?
– Every application uses internationalization (whether you know it or not!)
– A great deal of research potential

• Platforms
– Much of this talk will use Windows for examples
– Internationalization is a cross-platform concern!

www.isecpartners.comInformation Security Partners, LLC

3

Attacking Internationalized Software
• Introduction

• Background
– Internationalization Basics
– Platform Support
– The Internationalization “Stack”

• Historical Attacks
– Width calculation
– Encoding attacks

• Current Attacks
– Conversion from Unicode
– Conversion to Unicode
– Encoding Attacks

• Tools
– I18NAttack

• Q&A

www.isecpartners.comInformation Security Partners, LLC

4

Attacking Internationalized Software
Background – Internationalization Basics

• Internationalization Defined
– Provides support for potential use across multiple languages and locale-

specific preferences
– Most of this talk will focus on character manipulation

• Character Manipulation
– Text must be represented in 1s and 0s internal to the machine
– Many standards have emerged to encode text into a binary representation
– ASCII is a common example

www.isecpartners.comInformation Security Partners, LLC

5

Attacking Internationalized Software
Background – Internationalization Basics

Binary Representations:

APOSTROPHE = 0x27 = 0010 0111
LATIN CAPITAL LETTER A = 0x41 = 0100 0001
LATIN CAPITAL LETTER B = 0x42 = 0100 0010

Credit: http://www.microsoft.com/globaldev

www.isecpartners.comInformation Security Partners, LLC

6

Attacking Internationalized Software
Background – Internationalization Basics

• Code Pages
– Unicode
– Single-Byte: Most pages for European languages, ISO-8859-*…
– Multi-Byte: Japanese (Shift-JIS), Chinese, Korean

• Encodings
– EBCDIC, ASCII, UTF-7, UTF-8, UTF-16, UCS-2…

• Encodings vs. Code Points
– Code pages describe sets of points
– Encodings translate those points to 1s and 0s
– Some standards don’t require the distinction as much: ASCII
– Some are quite different: Unicode/UTF-8

www.isecpartners.comInformation Security Partners, LLC

7

Attacking Internationalized Software
Background – Internationalization Basics

• Multi-Byte Code Page
0x41 = U+0041 = LATIN CAPITAL LETTER A
0x81 0x8C = U+2032 = PRIME

See http://www.microsoft.com/globaldev for others

http://www.microsoft.com/globaldev

www.isecpartners.comInformation Security Partners, LLC

8

Attacking Internationalized Software
Background – Internationalization Basics

• Unicode
– Attempt to unify the world’s characters into a single code page
– Current standards specify a 21-bit character space

• Unicode Encodings
– Though Unicode is often associated with 8 or 16-bit chars, these are just the

most common encodings
– Many encodings available: UTF-32, UTF-16, UCS-2, UTF-8, UTF-7
– Many encodings, including UTF-16 and UTF-8 use a variable byte pattern

LATIN CAPITAL LETTER A = U+0041 = 0x41
HALFWIDTH KATAKANA LETTER A = U+FF71 = 0xEF 0xBD 0xB1

www.isecpartners.comInformation Security Partners, LLC

9

Attacking Internationalized Software
Background – Platform Support

• OS provides core of support
– Windows core text is UTF-16 encoded
– Linux Standard Base requires UTF-8 string support

• Support isn’t just from the OS
– Programming language
– Virtual machines
– Application only

• This offers a unique attack surface
– Cross-OS, Language, Application Class, and Implementation
– A great place to start is with standards that stipulate I18N support
– In short, this hits almost every application out there

www.isecpartners.comInformation Security Partners, LLC

10

Attacking Internationalized Software
Background – Platform Support

• Character Manipulation Support
– Everything required to support cross-code page data
– Everything required to support encodings

• Unicode often used as the canonical representation
– This makes sense given that it is the unified code page

• Each platform uses similar patterns for converstion
– Code page source – destination can be inferred
– Parameters of conversion – there are hard decisions to make
– Core data support – source and destination locations

• Let’s look at some examples…

www.isecpartners.comInformation Security Partners, LLC

11

Attacking Internationalized Software
Background – Platform Support

• MultiByteToWideChar – Convert to Unicode
– CodePage - can use default (CP_ACP) which will vary by system
– Note all of the length specifiers!

int MultiByteToWideChar(
UINT CodePage, // code page
DWORD dwFlags, // character-type options
LPCSTR lpMultiByteStr, // string to map
int cbMultiByte, // number of bytes in string
LPWSTR lpWideCharStr, // wide-character buffer
int cchWideChar // size of buffer

);

www.isecpartners.comInformation Security Partners, LLC

12

Attacking Internationalized Software
Background – Platform Support

• WideCharToMultiByte – Convert from Unicode
– dwFlags – modifies conversion properties

• WC_NO_BEST_FIT_CHARS is your friend!
– lpDefaultChar – allows you to specify error character

int WideCharToMultiByte(
UINT CodePage, // code page
DWORD dwFlags, // performance and mapping flags
LPCWSTR lpWideCharStr, // wide-character string
int cchWideChar, // number of chars in string
LPSTR lpMultiByteStr, // buffer for new string
int cbMultiByte, // size of buffer
LPCSTR lpDefaultChar, // default for unmappable chars
LPBOOL lpUsedDefaultChar // set when default char used

);

www.isecpartners.comInformation Security Partners, LLC

13

Attacking Internationalized Software
Background – Platform Support

• Almost every platform has support for internationalization
– Results depend on Unicode standard supported by platform

• Newer platforms tend to play nicer with Unicode
– .Net & Java use native Unicode encodings, though they can convert to others

• Great, I use one of those!
– Your application still depends on the internationalization support of underlying

OS, servers they interact with, etc.
– You still have to worry these attacks

www.isecpartners.comInformation Security Partners, LLC

14

Attacking Internationalized Software
Background – The Internationalization Stack

• Every application has internationalization dependencies

– Development platform
– External libraries
– Operating System
– Application Server
– Database Server - collations!
– Clients

www.isecpartners.comInformation Security Partners, LLC

15

Attacking Internationalized Software
Background – The Internationalization Stack

• Each level acts as a potential “internationalization boundary”
– Your app may get it right, but the next layer up or down might not!

• The Default Code Page
– Remember CP_ACP?
– Change system and user locales
– Ever tried to test your app on other languages?
– How about throughout the stack?

www.isecpartners.comInformation Security Partners, LLC

16

Attacking Internationalized Software
Background – The Internationalization Stack

• Web applications
– Code page can be set on both HTTP request and response

POST /test.html HTTP/1.1
Host: Server
User-Agent: I18NAttack
Accept: */*
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
Content-Type: application/x-www-form-urlencoded;

charset=utf-8
Content-length: 19

user=test&pass=test

www.isecpartners.comInformation Security Partners, LLC

17

Attacking Internationalized Software
Background – The Internationalization Stack

• Web applications
– Code page is set on first line of every XML document

<?xml version="1.0" encoding="utf-8" ?>
<TestXML>

<Data>
This is test data

</Data>

</TestXML>

www.isecpartners.comInformation Security Partners, LLC

18

Attacking Internationalized Software
Background – The Internationalization Stack

Please don’t check hereHTTP Parser

Operating
System

Database

Database
Access Library

Application
Logic

XML Parser

Most practical point of control for devs

Great research potential!

www.isecpartners.comInformation Security Partners, LLC

19

Attacking Internationalized Software
• Introduction

• Background
– Internationalization Basics
– Platform Support
– The Internationalization “Stack”

• Historical Attacks
– Width calculation
– Encoding attacks

• Current Attacks
– Conversion from Unicode
– Conversion to Unicode
– Encoding Attacks

• Tools
– I18NAttack

• Q&A

www.isecpartners.comInformation Security Partners, LLC

20

Attacking Internationalized Software
Historical Attacks – Width Calculation

• Security and Internationalization has seen some attention…
– Chalk these up as “lesson learned,” for the most part

• Attack Pattern – Incorrect Width Calculation
– Conversion functions
– Count of bytes vs. Count of characters

• sizeof(array) vs. sizeof(array)/sizeof(array[0])
– Compile-time function specifiers (lstr*, tchars) affect sizes

• Buffer Overflow
– Destination buffer assumed to be 1 byte/character
– Reported destination buffer is count of bytes rather than count of characters

www.isecpartners.comInformation Security Partners, LLC

21

Attacking Internationalized Software
Historical Attacks – Encoding Attacks

• Attack Pattern - non-minimal UTF-8 encodings

• Consider an HTTP Server
– I would like to request a file called blah.html off a web server

• Legitimate requests have simple encodings:
– http://.../web/index.html
– http://.../web/../../blah
– http://.../web/%2E%2E%2F%2E%2E%2F/blah
– It is easy enough to look for .. / %2E%2E and %2F

• Unusual encodings can bypass validation routines:
– %C0%AE is a non-minimal UTF-8 encoding for %2E
– http://.../web/%C0%AE%C0%AE%C0%AF%C0%AE%C0%AE%CO%AF/blah

www.isecpartners.comInformation Security Partners, LLC

22

Attacking Internationalized Software
• Introduction

• Background
– Internationalization Basics
– Platform Support
– The Internationalization “Stack”

• Historical Attacks
– Width calculation
– Encoding attacks

• Current Attacks
– Conversion from Unicode
– Conversion to Unicode
– Encoding Attacks

• Tools
– I18NAttack

• Q&A

www.isecpartners.comInformation Security Partners, LLC

23

Attacking Internationalized Software
Current Attacks – Conversion from Unicode

• Scenario – Validation is performed on input, changed to
locale-specific text

• Attack Class – “Use Best-Fit Equivalents”
– Unicode’s character space is much larger than any locale-specific code page
– Results in a many-to-one mapping for many characters
– Code-page specific
– Big reason why WC_NO_BEST_FIT_CHARS should always be specified

www.isecpartners.comInformation Security Partners, LLC

24

Attacking Internationalized Software
Current Attacks – Conversion from Unicode

• Sneaking an apostrophe in…
– U+2032 = PRIME
– Converted to Latin-1252 it is 0x27 – Apostrophe
– Same thing happens for quotation marks, numbers, letters, etc.
– Latin-1 isn’t the only code page, have you tried your other supported

languages as well?

Convert to Latin-1252

Demo

www.isecpartners.comInformation Security Partners, LLC

25

Attacking Internationalized Software
Current Attacks – Conversion to Unicode

• Scenario – Validation is performed on input, later converted
to Unicode

• Attack Class – “Eating Characters”
– Many languages rely on “escape characters” to cleanse data
– Validation routines will often identify and escape as appropriate
– Eating one of the characters will counteract this validation routine

• Use a multi-byte encoding scheme
– A converter will identify lead byte, and interpret trail bytes accordingly
– Just send up a lead byte by itself…

www.isecpartners.comInformation Security Partners, LLC

26

Attacking Internationalized Software
Current Attacks – Conversion to Unicode

• Eating a SQL quotation character
– Using Shift-JIS MBCS Japanese Code Page
– Interpret as Unicode

0x82 0x60 = FULLWIDTH LATIN CAPITAL LETTER A
0x82 0x27 = Not mapped, converts to default char (?)
0x82 0x27 0x27 = Not mapped plus apostrophe (?’)

• Consider a database…
– Table users requires support for names with an apostrophe
select * from users where name = ‘O’’Henry’
– Submit a last name that ends in 0x82
select * from users where name = ‘O’’Henry?
– Submit a last name that ends in 0x82’ or 1=1--
select * from users where name = ‘O’’Henry?’ or 1=1—

www.isecpartners.comInformation Security Partners, LLC

27

Attacking Internationalized Software
Current Attacks – Encoding Attacks

• Scenario – Validation is performed on input, changed to an
alternate encoding

• Attack Class – “Foiling Canonicalization”
– The IIS4 vuln required that %C0%AE be interpreted as 0x2E or simply ‘.’
– One easy way to fix – disallow non-minimal encoding support
– Indeed, the Unicode standard was changed

• What to do with the illegal characters
– Causing an error is not usually acceptible in widely distributed applications
– What happens if every unusual character caused a database to skip a

transaction?
– Most UTF-8 parsers today choose to omit such characters rather than fault

www.isecpartners.comInformation Security Partners, LLC

28

Attacking Internationalized Software
Current Attacks – Encoding Attacks

• Legitimate requests have simple encodings:
– http://.../web/index.html
– http://.../web/../../blah
– http://.../web/%2E%2E%2F%2E%2E%2F/blah
– ..easy enough to look for .. / %2E%2E and %2F

• Unexpected encodings can bypass validation routines:
– %C0%AE is a non-minimal UTF-8 encoding for %2E
– http://.../web/.%C0%AE./.%C0%AE./blah
– ../ or direct variants not found in input, so passed to file access routine
– File parser converts .%C0AE./.%C0AE./ to UTF-16 (as NtCreateFile requires)
– Non-minimal encodings dropped - ../../ remains

Demo

www.isecpartners.comInformation Security Partners, LLC

29

Attacking Internationalized Software
Current Attacks – Encoding Attacks

• Attack Class – “Mistaken Identity”
– We have been spoiled by the most common Unicode encodings
– Unicode is just a set of code points, encoding is up to the parser
– UTF-8, UTF-16, and UCS-2 all resemble ASCII

• UTF-7
– 7-bit encoding designed to work with ASCII-only SMTP
– Most printable ASCII characters are encoded directly
– Everything else is encoded as UTF-16, modified base64 encoded, and

wrapped with + and –

• Sneak “garbage” data past validators
– Most interesting characters exist in ASCII – ‘, “, <, >, =…
– Validation routines often take advantage of the ASCII resemblance
– Many encodings can easily bypass this approach
– ASCII, EBCDIC, UTF7..

www.isecpartners.comInformation Security Partners, LLC

30

Attacking Internationalized Software
Current Attacks – Bonus!

• Timestamp Attacks
– Is 10-06-06 October 6, 2006 or June 6, 2010?
– Your ticket expiration check might want to know!

• Sorting Attacks
– Which comes first, apple or aardvark? How about in Danish?
– Your search & validation routine might want to know!

• What is a proper decimal separator?
– Your CSV-based storage routine might want to know

www.isecpartners.comInformation Security Partners, LLC

31

Attacking Internationalized Software
• Introduction

• Background
– Internationalization Basics
– Platform Support
– The Internationalization “Stack”

• Historical Attacks
– Width calculation
– Encoding attacks

• Current Attacks
– Conversion from Unicode
– Conversion to Unicode
– Encoding Attacks

• Tools
– I18NAttack

• Q&A

www.isecpartners.comInformation Security Partners, LLC

32

Attacking Internationalized Software
Tools – I18NAttack

• Background
– Testing equivalence characters, “eaters,” alternate encodings is time

consuming!
– Goal is to provide a security-focused collection of characters and encodings

that often trip up input validation routines
– Using it is always going to be transport-dependent, but here is a tool to get

you started…

• I18NAttack
– HTTP POST/GET Parameter Fuzzer
– Reference implementation for nasty character database
– Will identify and fuzz problem characters across equivalents, unusual

encodings, etc.
– Use to bypass poor input validation

Demo

www.isecpartners.comInformation Security Partners, LLC

33

Attacking Internationalized Software

Q&A
Scott Stender

scott@isecpartners.com

mailto:scott@isecpartners.com

	Attacking Internationalized Software Introduction
	Attacking Internationalized Software
	Attacking Internationalized Software Background – Internationalization Basics
	Attacking Internationalized Software Background – Internationalization Basics
	Attacking Internationalized Software Background – Internationalization Basics
	Attacking Internationalized Software Background – Internationalization Basics
	Attacking Internationalized Software Background – Internationalization Basics
	Attacking Internationalized Software Background – Platform Support
	Attacking Internationalized Software Background – Platform Support
	Attacking Internationalized Software Background – Platform Support
	Attacking Internationalized Software Background – Platform Support
	Attacking Internationalized Software Background – Platform Support
	Attacking Internationalized Software Background – The Internationalization Stack
	Attacking Internationalized Software Background – The Internationalization Stack
	Attacking Internationalized Software Background – The Internationalization Stack
	Attacking Internationalized Software Background – The Internationalization Stack
	Attacking Internationalized Software Background – The Internationalization Stack
	Attacking Internationalized Software
	Attacking Internationalized Software Historical Attacks – Width Calculation
	Attacking Internationalized Software Historical Attacks – Encoding Attacks
	Attacking Internationalized Software
	Attacking Internationalized Software Current Attacks – Conversion from Unicode
	Attacking Internationalized Software Current Attacks – Conversion from Unicode
	Attacking Internationalized Software Current Attacks – Conversion to Unicode
	Attacking Internationalized Software Current Attacks – Conversion to Unicode
	Attacking Internationalized Software Current Attacks – Encoding Attacks
	Attacking Internationalized Software Current Attacks – Encoding Attacks
	Attacking Internationalized Software Current Attacks – Encoding Attacks
	Attacking Internationalized Software Current Attacks – Bonus!
	Attacking Internationalized Software
	Attacking Internationalized Software Tools – I18NAttack
	Attacking Internationalized Software

